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Abstract:
This paper addresses the crucial task of enhancing the reconstruction quality of
dynamic scenes by leveraging UAVs equipped with high-definition cameras. De-
spite their proven efficacy, deploying such systems for human-operated filming
necessitates careful consideration of collision avoidance with the environment and
other drones, ensuring human safety. We propose an adaptive viewpoint selection
approach to collect distributed pixel-level metrics like Pixel-Per-Area (PPA) and
account for the diversity of seen pixels. The methodology involves converting the
scene representation into a low-level geometric mesh, enabling reasoning for each
pixel. We formulate a Markov Decision Process (MDP) model using Q-learning
and SARSA, offering scalability and safer camera pose estimates for UAV navi-
gation. We conduct deeper studies to explore the performance of effective robot
learning algorithms against value-iteration policies, and provide explanation of the
intuitive advantages and limitations of these methods in terms of generalizability
and effectiveness in human-operated environments.

1 Introduction

The increased availability of cameras on UAVs has invoked deep interest in its use for various appli-
cations such as search and rescue, environmental monitoring, 3D reconstruction [1, 2, 3, 4]. In such
applications, it is critical for any UAV to maximize its coverage over the environment, and ensure
optimal coverage of dynamic targets. We formulate the problem as a multi-agent multi-target cov-
erage problem, where the objective is to calculate a collision-free path for the agents that maximize
pixel coverage of dynamically moving targets.

While one can use value iteration, it requires known MDP of the environment. This is a non-ideal
candidate for large-scale multi-UAV planning and dynamic target tracking given that the policy
extraction requires a known transition function, which is oftten unkown in real-world scenarios.
This prompts us to investigate the use of sampling based Q-value iteration functions, namely Q-
learning and SARSA. By using a sampling-based method, we hope to scale to larger and unkown
scenes effectively.

2 Related Work

Our work builds upon recent work in multi-view drone planning and dynamic target tracking.

[3] proposed a system to capture multiple views of a single actor for human pose reconstruction,
by using a preconfigured actor-centric formation.[5] proposed a spherical discretization of the robot
state space, allowing for rapid greedy single-robot planning, which could generate joint-plans in a
sequential manner. To extend this to a multi-actor space, [? ] proposed allowing robots to plan
over the full-environment, but did not consider inter-robot collisions. [6] proposes to learn control
policies for actively classifying moving targets, building upon [7],[8].



A key challenge is the intractable nature of multi-robot perception and planning problems, which are
often solved through greedy sub-modular optimization, guaranteeing a lower bound of half of the
optimal solution in polynmial time. Subsequently, [9] removed these limitations by implementing a
planner for optimize camera viewpoints for multi-drone multi-actor scenarios, building upon prior
work from [10]and [? ]. In particular, [9] develops upon perception objectives proposed by [10] on
using pixel densities (PPA) as a reconstruction quality proxy and plan views by maximizing the PPA
of the actor’s geometrical shape.

3 Methodology

Figure 1: Problem Formulation: We aim to calculate joint paths for a group of agents to maximize
pixel coverage of the dnyamic targets

Our aim is to jointly plan collision-free control input sequences for a team of agents for maximizing
the reconstruction coverage of a dynamically moving agents in a particular environment.

Particularly, we have r agents, denoted by {1, . . . , Nr}, and a set of dynamic targets T =
{1, . . . , Nt}. Each of these targets have faces Fj = {1, . . . , Nj,f} where j ∈ T and we repre-
sent the set of all faces for all targets as F = {F1, ...,FNt}. Furthermore, we associate these faces
with a set of pixel coverage by agents = {111, ...,ijk }, where i ∈ Nr, j ∈ Nt, and k ∈ Nj,f .

The movement of these agents is synchronized with a common global clock that starts at t = 0, and
we represent this movement in a workspace as a finite graph G = (V, E). Here, V consists of all
possible locations for the i-th agent at time t (vit ∈ V), while E represents the set of actions (eit ∈ E)
taken by the i-th agent at discrete times t ∈ 0, . . . , T , where i belongs to the set of robots, . Each
action eit has an associated reward, denoted as reward(eit), which is a non-zero vector in R+M with
M dimensions. ξi(vi1, v

i
l) defines a path linking vertices vi1 and vil through a sequence of vertices

(vi1, v
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2, ..., v

i
l) ∈ G. Furthermore, gi(ξi(vi1, v
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We define vio, v
i
f ∈ V as the initial location of the i-th agent and its corresponding destination. Then,

a path from vio to vif for agent i is represented by as ξi, and the joint path (solution) for all agents
is denoted by ξ = (ξ1, ξ2, ..., ξNr ). The solution’s cost vectors is then calculated as the sum of all
agents’ individual path costs g(ξ) =

∑Nr

i=1 g
i(ξi).

For each agent, the state transitions is specified as a constant velocity motion model:

xi,t+1 = fi(xi,t, ui,t)

Our objective is then to maximise the pixel coverage of the dynamic targets, which is calculated by
the sum of pixel coverage of all agents’ faces Jcov(ξ) =

∑Nt

i (
∑

i Jcov(Fji)).
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To solve this objective function we have the reward function defined by the number of pixels covered
by a render, using this reward function we create an MDP model for each robots and solve using the
algorithms 1 and 2, that is of SARSA and Q-learning.

Q-Learning is employed to learn Q-values for state-action pairs, enabling agents to autonomously
plan optimal paths. The algorithm operates in an environment defined by states (S), actions (A), a
transition model (P ), and a reward function (R). Hyperparameters, including the learning rate (α),
discount factor (γ), and exploration rate (ϵ), are set to control the learning process.

The SARSA algorithm complements our approach by learning Q-values for state-action pairs in a
sample-based variant of Q-value iteration. Similar to Q-Learning, SARSA operates in an environ-
ment defined by states, actions, a transition model, and a reward function. Hyperparameters are set
to ensure effective learning.

Figure 2: Psuedocode of Q-Learning and SARSA algorithms, as taken from [11]

4 Experiments

In our experimental setup, we employed a system equipped with a NVIDIA GeForce RTX 3090
Ti GPU to facilitate the training and evaluation of our reinforcement learning models. For the Q-
learning approach, we utilized standard parameters, including a learning rate of 0.001, a discount
factor (gamma) of 0.99, and an exploration-exploitation trade-off represented by the epsilon-greedy
strategy with an initial epsilon value of 1.0 and a decay rate of 0.995 per episode. The neural network
architecture employed for Q-learning consisted of two fully connected layers with ReLU activation
functions. Additionally, we implemented experience replay with a buffer size of 10,000 samples to
enhance learning stability.

Similarly, for the SARSA solver, we utilized comparable parameters to ensure a fair comparison.
The SARSA algorithm incorporated a learning rate of 0.001, a discount factor of 0.99, and an
epsilon-greedy strategy with an initial epsilon value of 1.0, decaying at a rate of 0.995 per episode.
The neural network architecture for SARSA followed the same configuration as the Q-learning
model. Both Q-learning and SARSA were subjected to a maximum of 1,000 episodes for training,
with each episode representing interactions within the environment. These standardized parameters
aimed to establish a consistent and comparable experimental framework for evaluating the proposed
adaptive viewpoint selection system.

5 Results

The experimental evaluation compared Value Iteration, SARSA, and Q-Learning in a corridor en-
vironment. Figure 3 showcased qualitative visualizations of the pixel coverage by Value Iteration(
modeled by a defined transition function, SARSA and Q-Learning(both of which demonstrated Q
function learning without defined transitions). In Figure 4, we provide quantitative results of these
3 methods. These results highlight a further need for hyperparameter tuning in SARSA and Q-
Learning to improve against the state-of-art value Iteration’s advantage in smaller environments, as
well as testing in large-scale scenes to demonstrate scalability.
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Figure 3: Performance Comparison in a Corridor Environment: The top row depicts results from
Value Iteration, the middle row illustrates outcomes obtained using the SARSA algorithm, and the
bottom row exhibits results achieved through Q-Learning. In the corridor environment, the left robot
represents Robot 1, and the right robot is Robot 2. The side black panel shows renders from Robot
2 at the top and Robot 1 at the bottom. Square boxes represent two targets from a top view, and at
T=0, their corresponding trajectories are visible with black and red lines. The results highlight that
with a well-defined transition function, the robots exhibit distributed pixel coverage. In contrast,
results from SARSA and Q-Learning, without explicitly defined transition functions, showcase the
direct learning of the Q function.

6 Conclusion and Future Work

In conclusion, this paper introduced an adaptive viewpoint selection approach for enhancing the re-
construction quality of dynamic scenes using UAVs equipped with high-definition cameras. The pro-
posed methodology, employing Q-learning and SARSA within a Markov Decision Process frame-
work, demonstrated its effectiveness in achieving distributed pixel coverage. Comparative analy-
ses with Value Iteration highlighted the adaptability of the reinforcement learning solvers. While
exhibiting promising results, further refinement through hyperparameter tuning is acknowledged,
particularly for Q-Learning and SARSA. Future work will involve extensive testing on diverse and
larger scenes, affirming the method’s potential for human-operated filming in dynamic and challeng-
ing environments.
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Figure 4: Performance Comparison of Reinforcement Learning Solvers: The top-left figure displays
maximum rewards achieved with the Value Iteration solver. However, Q-Learning and SARSA algo-
rithms exhibit the need for hyperparameter tuning, particularly in terms of decreasing learning rates
and increasing episodes, as seen in the top-right and bottom-left figures. Notably, the performance
benchmarks in larger grids for SARSA and Q-Learning are expected to be intuitively better, as Value
Iteration would require a transition function that becomes impractical in real-world scenarios with
larger environments.
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[6] Á. Serra-Gómez, E. Montijano, W. Böhmer, and J. Alonso-Mora. Active classification of
moving targets with learned control policies. IEEE Robotics and Automation Letters, 2023.

[7] B. F. Jeon, D. Shim, and H. J. Kim. Detection-aware trajectory generation for a drone cine-
matographer. In 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 1450–1457. IEEE, 2020.
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